Enable contrast version

# Tutor profile: Jason C.

Inactive
Jason C.
Tutor from MIT
Tutor Satisfaction Guarantee

## Questions

### Subject:Python Programming

TutorMe
Question:

Write a function that takes two integers and returns their greatest common divisor.

Inactive
Jason C.

The greatest common divisor is at most the smallest of the two inputs. Therefore, we can just loop up to the minimum of the two inputs and check: $$\verb|def f(a, b):|$$ $$\verb| common_divisors = []|$$ $$\verb| for d in range(1, min(a, b) + 1):|$$ $$\verb| if a%d == 0 and b%d == 0:|$$ $$\verb| common_divisors.append(d)|$$ $$\verb| return max(common_divisors)|$$

### Subject:Pre-Calculus

TutorMe
Question:

Evaluate $$(1+i\sqrt 3) e^{-i \pi/3}$$.

Inactive
Jason C.

First, we will convert $$e^{-i \pi/3}$$ to rectangular form: $( e^{-i \pi/3} = \cos (-\pi/3) + i \sin (-\pi/3) = \frac{1}{2} - \frac{\sqrt 3}{2}.$) Then, we take the product of the two terms: (\begin{align*} (1 + i \sqrt 3) \left( \frac{1}{2} - i \frac{\sqrt 3}{2} \right) &= \left( \frac{1}{2} - i \frac{\sqrt 3}{2} \right) + i \sqrt 3 \left( \frac{1}{2} - i \frac{\sqrt 3}{2} \right) \\ &= \frac{1}{2} - i \frac{\sqrt 3}{2} + i \frac{\sqrt 3}{2} + \frac{3}{2} \\ &= 2. \end{align*})

### Subject:Calculus

TutorMe
Question:

Evaluate $( \oint_C [(x^2 - y^2)\,dx + (x^2 + y^2)\,dy],$) where $$C$$ is the boundary of the square with vertices $$(0, 0)$$, $$(1, 0)$$, $$(1, 1)$$, and $$(0, 1)$$, oriented counterclockwise

Inactive
Jason C.

By Green's theorem, we know that the integral about the boundary of region is equal to the integral of the divergence over the region. (\begin{align*}\oint_C [(x^2 - y^2)\,dx + (x^2 + y^2)\,dy] &= \iint_{[0, 1]^2} \left[\frac{d}{dx}(x^2 + y^2) - \frac{d}{dy}(x^2 - y^2)\right] \,dA \\ &= \int_0^1 \int_0^1 [2x + 2y] \,dx\,dy = 2.\end{align*})

## Contact tutor

Send a message explaining your
needs and Jason will reply soon.
Contact Jason