Enable contrast version

# Tutor profile: Amadej Kristjan K.

Inactive
Mathematics Tutor
Tutor Satisfaction Guarantee

## Questions

### Subject:Machine Learning

TutorMe
Question:

Suppose we are trying to use a machine learning algorithm to perform a classification task, which humans can do with $$98$$% accuracy. Our machine learning algorithm has $$95$$% accuracy on the training set and $$70$$% accuracy on the test set. What is our machine learning algorithm likely suffering from and how can we surmount this issue?

Inactive

The algorithm is likely suffering from overfitting. This means that the algorithm 'memorises' a lot of irrelevant information that is specific to the set it's training on, but fails to generalise the patterns to the general data distribution. When faced with a yet unseen test set, it performs much worse. In such a scenario, what we can do several of the following: - we can increase the amount of training data (this way the algorithm is faced with a slightly more representative representation of the general data distribution), - we can reduce the representational capacity of the model (making the model simpler, to force the algorithm to only encode the most crucial, generalizable information into the model), - we can incorporate regularisation techniques to reduce overfitting (add a penalising term to the loss function as done in Ridge and Lasso regression or in case of using neural networks we can add dropout regularisation).

### Subject:Discrete Math

TutorMe
Question:

Prove that there are infinitely many prime numbers.

Inactive

Suppose for the sake of contradiction that there are only finitely many prime numbers. Then we can list them as follows: $$p_1,p_2,...,p_n$$. Now consider the number $$P = p_1p_2...p_n + 1$$. It is not divisible by either of the prime numbers listed, as it gives a remainder of $$1$$ when divided by any of them. Therefore it is only divisible by $$1$$ and itself, having only $$2$$ positive integer divisors, which makes $$P$$ a prime number. But we assumed the above list of primes contained all prime numbers. Since we found a prime outside of the list with supposedly all primes, we arrived at a contradiction. Hence, there are infinitely many prime numbers.

### Subject:Calculus

TutorMe
Question:

Let $$R$$ be a rectangle with side lengths $$a$$ and $$b$$. If we keep its perimeter $$P$$ fixed, at what $$a:b$$ ratio will the area $$A$$ of the rectangle be maximised?

Inactive

The (fixed) perimeter $P$ of the rectangle is: $$P = 2(a+b)$$ The area is: $$A = ab = a(\frac{P}{2}-a) = \frac{Pa}{2}-a^2$$ Thus, we can view the area of $$R$$ as a function of the variable $$a$$ and see at which value of $$a$$ the area is maximised subject to our given perimeter $$P$$. We can obtain the maximum by figuring out where the derivative of this function is $$0$$. $$\frac{dA}{da} = \frac{P}{2}-2a$$ so we need to solve $$0 = \frac{P}{2}-2a$$, giving $$a = \frac{P}{4}$$. Now substituting this into $$P = 2(a+b)$$ gives $$b=\frac{P}{4}$$, meaning that for maximising the area we need $$a = b$$.

## Contact tutor

Send a message explaining your

Start Lesson

## FAQs

What is a lesson?
A lesson is virtual lesson space on our platform where you and a tutor can communicate. You'll have the option to communicate using video/audio as well as text chat. You can also upload documents, edit papers in real time and use our cutting-edge virtual whiteboard.
How do I begin a lesson?
If the tutor is currently online, you can click the "Start Lesson" button above. If they are offline, you can always send them a message to schedule a lesson.
Who are TutorMe tutors?
Many of our tutors are current college students or recent graduates of top-tier universities like MIT, Harvard and USC. TutorMe has thousands of top-quality tutors available to work with you.
BEST IN CLASS SINCE 2015
TutorMe homepage