Enable contrast version

# Tutor profile: Akshat K.

Inactive
Akshat K.
STEM Tutor since 3 years
Tutor Satisfaction Guarantee

## Questions

### Subject:Pre-Calculus

TutorMe
Question:

A right triangle has base $$x$$ and height $$y$$. If the area of the triangle is 5 square inches, express the perimeter of the triangle as a function of $$x$$

Inactive
Akshat K.

Using the Pythagorean Theorem, we know that the third side (hypotenuse) $$= \sqrt{x^2+y^2}$$ So, the perimeter $$P$$ will be: $$P=x+y+\sqrt{x^2+y^2}$$ Since $$A=\frac{1}{2}xy=5$$, $$=> xy=10$$ $$=> y=10/x$$ Now, Substituting back gives $$P=x+\frac{10}{x}+\sqrt{x^2+(10/x)^2}$$

### Subject:Calculus

TutorMe
Question:

$$\int_{}{} e^x sinx$$ $$dx$$

Inactive
Akshat K.

1) Use Integration by parts: $$u = sinx$$ and $$dv = e^x$$ So, $$du = cosx$$ and $$v = e^x$$ Now, $$\int_{}{} udv = uv - \int{}{}vdu$$ $$= e^xsinx - \int{}{}e^xcosx$$ $$dx$$ Here, performing integration by barts on $$\int{}{}e^xcosx$$ $$dx$$ we get: $$u = cosx$$ and $$dv = e^x$$ So, $$du = -sinx$$ and $$v = e^x$$ Therefore, $$\int_{}{} e^x sinx$$ $$dx$$ $$= e^xsinx - [e^xcosx - \int{}{}e^x(-sinx)$$ $$dx$$] $$\int_{}{} e^x sinx$$ $$dx$$ $$=e^xsinx - e^xcosx - \int{}{}e^xsinx$$ $$dx$$ $$\int_{}{} e^x sinx$$ $$dx$$ $$+ \int{}{}e^xsinx$$ $$dx$$ $$=e^xsinx - e^xcosx + C$$ $$2\int_{}{} e^x sinx$$ $$dx$$ $$=e^xsinx - e^xcosx + C$$ $$\int_{}{} e^x sinx$$ $$dx$$ $$=\frac{e^xsinx - e^xcosx}{2} + C$$ $$\int_{}{} e^x sinx$$ $$dx$$ $$=\frac{e^x}{2}(sinx - cosx) + C$$

### Subject:Algebra

TutorMe
Question:

The population of a city is $$P = 2500 e^{x^2 - x -6}$$ where $$x= 0$$ represents the population in 2000. In which year will the population be $$2500$$?

Inactive
Akshat K.

Given: $$P = 2500$$; To find: $$x$$ Now, we know that: $$P = 2500 e^{x^2 - x -6}$$ $$2500 = 2500 e^{x^2 - x -6}$$ $$e^{x^2 - x -6} = \frac{2500}{2500}$$ $$e^{x^2 - x -6} = 1$$ $$e^{x^2 - x -6} = e^0$$ $$x^2 - x -6 = 0$$ $$(x-3)(x+2) = 0$$ $$x = 3$$ or, $$x = -2$$ Now, since x represents number of years after 2000, it cannot be negative. Hence, $$x = 3$$ So, in the year 2003, the population will be 2500.

## Contact tutor

Send a message explaining your
needs and Akshat will reply soon.
Contact Akshat