Enable contrast version

# Tutor profile: Patricia A.

Inactive
Patricia A.
Higher education teacher for24 years
Tutor Satisfaction Guarantee

## Questions

### Subject:Pre-Calculus

TutorMe
Question:

How do we sole 3^(x+1) = 81^(2x)?

Inactive
Patricia A.

First, we may notice that 81 is a power of three specifically 3^4. We rewrite the equation as 3^(x+1)=(3^4)^(2x). Simplifying we get 3^(x+1)=3^(8x) using the rules of exponents. We can now set the powers equal because the numbers are equal and the bases are the same. So, x+1=8x. Subtracting one from each side gives us 7x=1. Dividing by 7 gives us x=1/7. You should check your result by plugging this into the original equation.

### Subject:Trigonometry

TutorMe
Question:

Why might you use De'Moivres theorem to find the product of (3+I*radical (3))^7?

Inactive
Patricia A.

Finding the product (3+i*radical 3))^7 would require someone to multiply out the factor times itself 7 times. If we change the number to trigonometric form using tan (theta)=y/x and x^2+y^2=r^2 we get.:Tan(theta) =(radical (3))/3 or theta is 30 degrees and 3^2 + (rad (3))^2=r^2 or r =rad (12) or 2 rad(3). The trig form is 2rad(3)*(cos 30 +i*sin30). We then apply De'Moivres theorem and get (2 rad(3))^7) (cos 7*30 + i * sin(7*30))

### Subject:Calculus

TutorMe
Question:

What is the second derivative test used for and what steps should you take to use it?

Inactive
Patricia A.

The second derivative test is used to find local extreme. To use this test you should take the following steps: 1) take the first derivative of the function 2) find the critical points for the first derivative ( f'(x)=0 or f'(x) undefined) 3) find the second derivative f"(x) 4) plug the critical points of the first derivative into the second derivative. If the result is positive, the function is concave up at that point and it is a local minimum at that point. If the result is negative the function is concave down at that point and it is a local minimum at that point.

## Contact tutor

Send a message explaining your
needs and Patricia will reply soon.
Contact Patricia