TutorMe homepage

SIGN IN

Start Free Trial

Allyson P.

Tutor for 2 years

Tutor Satisfaction Guarantee

Discrete Math

TutorMe

Question:

Let A, B, C be sets. Prove A × (B ∪ C) = (A × B) ∪ (A × C).

Allyson P.

Answer:

Let A, B, C be sets. (a, b) ∈ A × (B ∪ C) ⇐⇒ a ∈ A and b ∈ (B ∪ C), ⇐⇒ a ∈ A and (b ∈ B or b ∈ C ), ⇐⇒ (a, b) ∈ (A × B) or (a, b) ∈ (A × C), ⇐⇒ (a, b) ∈ (A × B) ∪ (A × C). Therefore, A × (B ∪ C) = (A × B) ∪ (A × C).

Econometrics

TutorMe

Question:

Define heteroskedasticity.

Allyson P.

Answer:

Heteroscedasticity occurs when the variability of a variable is unequal across the range of values of a different variable that predicts it. That is, the variance of one variable, call it x1, affects a second variable, call it x2, differently than it would affect another variable, call it x3.

Statistics

TutorMe

Question:

When would be the appropriate time to use a z-score? What about a t-score?

Allyson P.

Answer:

T-scores are generally used for small sample sizes. When reading the problem, look for sample mean, x-bar, sample sizes less than 20, or standard deviations, s. Z-scores are generally used for large sample sizes. When reading the problem, look for the population mean, mu, sample sizes greater that 20, or the population standard deviation, sigma.

Send a message explaining your

needs and Allyson will reply soon.

needs and Allyson will reply soon.

Contact Allyson

Ready now? Request a lesson.

Start Session

FAQs

What is a lesson?

A lesson is virtual lesson space on our platform where you and a tutor can communicate.
You'll have the option to communicate using video/audio as well as text chat.
You can also upload documents, edit papers in real time and use our cutting-edge virtual whiteboard.

How do I begin a lesson?

If the tutor is currently online, you can click the "Start Session" button above.
If they are offline, you can always send them a message to schedule a lesson.

Who are TutorMe tutors?

Many of our tutors are current college students or recent graduates of top-tier universities
like MIT, Harvard and USC.
TutorMe has thousands of top-quality tutors available to work with you.

Made in California

© 2018 TutorMe.com, Inc.