# Tutor profile: Evren Z.

## Questions

### Subject: Linear Algebra

Prove that the following matrix $$A$$ is invertible. $$\begin{bmatrix}10 & 3 \\ 4 & 5\end{bmatrix}$$.

The matrix $$A$$ is invertible $$\Leftrightarrow $$ $$det(A)\neq 0 $$. So, $$det(A)=50-12=38\neq 0\Leftrightarrow A$$ is invertible.

### Subject: Geometry

Write the equation $$x^{2}+y^{2}-3x+4y+4=0$$ in standard form.

Completing the square for the $$x$$-terms with $$\frac{9}{4}$$ and for the $$y$$-terms with 4, $$ \left( x^{2}-3x+\frac{9}{4} \right)+\left ( y^{2}+4y+4 \right)=-4+\frac{9}{4}+4$$. Factoring each group of terms gives rise to $$\left ( x-\frac{3}{2} \right )^{2}+\left ( y+2 \right )^{2}=\left ( \frac{3}{2} \right )^{2}$$.

### Subject: Calculus

Give the geometrical interpretation of the integral $$\int_{0}^{1}x^2dx$$.

Keep in mind that there is a direct link between geometry and calculus in terms of evaluating the definite integrals. The integral gives us the area bounded by the curve $$y=x^{2}$$ , the $$x-axis$$ and the line $$x=1$$.

## Contact tutor

needs and Evren will reply soon.