Enable contrast version

Tutor profile: Suraj N.

Inactive
Suraj N.
Data Science Trainer
Tutor Satisfaction Guarantee

Questions

Subject: Python Programming

TutorMe
Question:

Take two lists, say for example these two: a = [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89] b = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] and write a program that returns a list that contains only the elements that are common between the lists (without duplicates). Make sure your program works on two lists of different sizes.

Inactive
Suraj N.
Answer:

a = [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89] b = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] c =[] def find_common(a,b): for i in a: if i in b: c.append(i) # or we can right this also a = [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89] b = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] C=[] C = [i for i in a if i in b]

Subject: Machine Learning

TutorMe
Question:

What’s the trade-off between bias and variance?

Inactive
Suraj N.
Answer:

Bias is error due to erroneous or overly simplistic assumptions in the learning algorithm you’re using. This can lead to the model underfitting your data, making it hard for it to have high predictive accuracy and for you to generalize your knowledge from the training set to the test set. Variance is error due to too much complexity in the learning algorithm you’re using. This leads to the algorithm being highly sensitive to high degrees of variation in your training data, which can lead your model to overfit the data. You’ll be carrying too much noise from your training data for your model to be very useful for your test data. The bias-variance decomposition essentially decomposes the learning error from any algorithm by adding the bias, the variance and a bit of irreducible error due to noise in the underlying dataset. Essentially, if you make the model more complex and add more variables, you’ll lose bias but gain some variance — in order to get the optimally reduced amount of error, you’ll have to tradeoff bias and variance. You don’t want either high bias or high variance in your model.

Subject: Artificial Intelligence

TutorMe
Question:

What is the difference between strong AI and weak AI?

Inactive
Suraj N.
Answer:

Strong AI makes the bold claim that computers can be made to think on a level (at least) equal to humans. Weak AI simply states that some "thinking-like" features can be added to computers to make them more useful tools... and this has already started to happen (witness expert systems, drive-by-wire cars and speech recognition software). What does 'think' and 'thinking-like' mean? That's a matter of much debate.

Contact tutor

Send a message explaining your
needs and Suraj will reply soon.
Contact Suraj

Request lesson

Ready now? Request a lesson.
Start Lesson

FAQs

What is a lesson?
A lesson is virtual lesson space on our platform where you and a tutor can communicate. You'll have the option to communicate using video/audio as well as text chat. You can also upload documents, edit papers in real time and use our cutting-edge virtual whiteboard.
How do I begin a lesson?
If the tutor is currently online, you can click the "Start Lesson" button above. If they are offline, you can always send them a message to schedule a lesson.
Who are TutorMe tutors?
Many of our tutors are current college students or recent graduates of top-tier universities like MIT, Harvard and USC. TutorMe has thousands of top-quality tutors available to work with you.