Enable contrast version

Tutor profile: Ryan S.

Inactive
Ryan S.
College TA/Tutor, PhD Astrophysics Student
Tutor Satisfaction Guarantee

Questions

Subject: Calculus

TutorMe
Question:

A company's sales over the course of a year have been found to be quite well modeled by the function $$S(t) = -4t^2+52t+120$$, where $$S$$ represents the sales at a given point in time in units of thousands of products, and $$t$$ represents time of year in units of months. During what month of the year does this company experience its maximum in sales?

Inactive
Ryan S.
Answer:

The maximum of a function can be found by determining where the function's derivative is equal to 0 and its second derivative is negative. Looking at the function provided for the company's sales, its derivative is $$ S'(t) = -8t + 52$$ . So, setting this equal to 0: $(-8t+52=0 \implies 8t=52 \implies t=6.5$) .Moreover, checking its second derivative at that time: $(S''(t) =-8\\ S''(6.5) = -8$). Thus, because the first derivative is equal to 0 and the second derivative is negative then, it can be concluded that the company reports its maximum in sales at $$t=6.5$$, or in June.

Subject: Astronomy

TutorMe
Question:

Earth's orbital eccentricity is ~0.02 and its axis tilt is ~23.5 degrees relative to the plane of its orbit around the Sun. Why does Earth’s orbital eccentricity not matter when considering seasons?

Inactive
Ryan S.
Answer:

Earth’s orbital eccentricity is very small at 0.02 ($$0.02<<1$$), meaning that Earth’s orbit around the Sun is quite close to being perfectly circular, and as a result, Earth experiences barely any noticeable changes due to variations in distance over the course of its orbit. On the other hand, Earth’s axis tilt is fairly large, and the variation in the directness of sunlight for the 2 hemispheres is what really causes seasons.

Subject: Physics

TutorMe
Question:

A satellite orbits Earth with a speed of 11,000 kph. How much more slowly (as a percentage) does a clock onboard this satellite tick as observed from Earth's surface compared to this same clock observed from inside the satellite?

Inactive
Ryan S.
Answer:

According to the theory of special relativity, the clock will appear to tick more slowly when observed by someone on Earth's surface than it will when observed by someone onboard the satellite--this is the effect of time dilation. So, the equation used is the time dilation equation, $$\Delta t = \gamma \Delta t_0$$, where $$\Delta t$$ is the time elapsed observed from Earth, $$\Delta t_0$$ is the time elapsed observed from onboard the satellite, and $$\gamma$$ is the Lorentz factor: $(\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} $), with $$v$$ the relative speed and $$c$$ the speed of light. The question asks much MORE slowly the clock is observed to tick. So, this change as a decimal would be $$\frac{\Delta t - \Delta t_0}{\Delta t_0}$$, or $$\gamma - 1$$. The speed of light in kph is approximately $$1.1 \times 10^9$$. So, plugging in the numbers, we get that $$\gamma \approx 1.00000000005$$. Thus, as a decimal, the clock ticks more slowly with a change of $$\gamma - 1 = 0.00000000005$$, or, as a percentage, 0.000000005% more slowly--barely any more slowly, even with a satellite orbiting Earth quite fast.

Contact tutor

Send a message explaining your
needs and Ryan will reply soon.
Contact Ryan

Request lesson

Ready now? Request a lesson.
Start Lesson

FAQs

What is a lesson?
A lesson is virtual lesson space on our platform where you and a tutor can communicate. You'll have the option to communicate using video/audio as well as text chat. You can also upload documents, edit papers in real time and use our cutting-edge virtual whiteboard.
How do I begin a lesson?
If the tutor is currently online, you can click the "Start Lesson" button above. If they are offline, you can always send them a message to schedule a lesson.
Who are TutorMe tutors?
Many of our tutors are current college students or recent graduates of top-tier universities like MIT, Harvard and USC. TutorMe has thousands of top-quality tutors available to work with you.
BEST IN CLASS SINCE 2015
TutorMe homepage
Made in California by Zovio
© 2013 - 2021 TutorMe, LLC
High Contrast Mode
On
Off