Enable contrast version

Tutor profile: Justin L.

Inactive
Justin L.
Mathematician & Software Developer
Tutor Satisfaction Guarantee

Questions

Subject:Pre-Calculus

TutorMe
Question:

How many real solutions does $$x^2-2x + 1 = 0$$ have?

Inactive
Justin L.

One approach is to factor the equation \begin{align*} 0 &=x^2-2x+1 \\ &= ( x - 1)^2 \end{align*} Since the only solution is $$x=1$$, there is 1 real solution. *NOTE: Although the root at $$x=1$$ has multiplicity 2, the value 1 is the only root. A second approach is to look at the discriminant $$D$$. Using the form $$ax^2 + bx + c = 0$$ we can substitute $$a=1, b=-2,$$ and $$c=1$$, to evaluate $$D=b^2-4ac$$ and look at whether $$D$$ is 0, positive, or negative. When substituting, we see $$D = 4 - 4(1)(1) = 0$$. Since the discriminant is $$0$$ there is 1 real solution. This confirms our findings.

Subject:Calculus

TutorMe
Question:

For the following function $$f$$, determine if it is continuous on $$R$$. If so find its derivative. $$f(x) = e^x\sin(x)$$

Inactive
Justin L.

Since $$f$$ can be written as $$f(x) = g(x)\cdot h(x)$$ where $$g(x)=e^x$$ and $$h(x) = \sin(x)$$ and both $$g$$ and $$h$$ are continuous on $$R$$, then $$f$$ is continuous on $$R$$. Continuing with our definitions of $$g$$ and $$h$$, we can use the Product Rule on $$f$$. \begin{align*} f'(x) &= g'(x)\cdot h(x) + g(x)\cdot h'(x) \\ &= e(x) \cdot \sin(x) + e^x\cdot \cos(x) \\ &= e^x\cdot[s\sin(x) + \cos(x)] \end{align*}

Subject:Algebra

TutorMe
Question:

A farmer wants to build a rectangular pen that is twice as long as it is wide. He has 300 feet of fencing material. What should the width of the pen be?

Inactive
Justin L.

First, we let $$W$$ denote the width. This is what we would like to find. Now we write our list of facts: $$(1)] P=300$$ where $$P$$ is the perimeter (the amount of fencing material) $$(2)] P=2W + 2L$$ since the pen is a rectangle $$(3)] L = 2W$$ since the farmer wants the length to be twice the width Since we know the value of $$P$$ from $$(1)$$, we can use this in $$(2)$$. This gives us another fact: $$300 = 2W + 2L$$ Now we can use $$(3)$$ with our new fact $$300=2W+2L$$ to say $$300 = 2W + 2(2W)$$ where we have substituted for $$L$$. We combine like terms and have $$300 = 6W$$ Therefore $$W=50$$ Since we were looking for $$W$$ this problem is done. The width should be 50 feet.

Contact tutor

Send a message explaining your
needs and Justin will reply soon.
Contact Justin

Start Lesson

FAQs

What is a lesson?
A lesson is virtual lesson space on our platform where you and a tutor can communicate. You'll have the option to communicate using video/audio as well as text chat. You can also upload documents, edit papers in real time and use our cutting-edge virtual whiteboard.
How do I begin a lesson?
If the tutor is currently online, you can click the "Start Lesson" button above. If they are offline, you can always send them a message to schedule a lesson.
Who are TutorMe tutors?
Many of our tutors are current college students or recent graduates of top-tier universities like MIT, Harvard and USC. TutorMe has thousands of top-quality tutors available to work with you.
BEST IN CLASS SINCE 2015
TutorMe homepage