Enable contrast version

# Tutor profile: Rae F.

Inactive
Rae F.
Math and Science Tutor for Ten Years
Tutor Satisfaction Guarantee

## Questions

### Subject:Pre-Algebra

TutorMe
Question:

2(4X-5) - (7x + 4 + 1) = -14

Inactive
Rae F.

Remember order of operations: PEMDAS Parentheses Exponents Multiplication Division Addition Subtraction Parentheses: We add like terms 2(4X-5) - (7x + 4 + 1) = -14 2(4X-5) - (7x + 5) = -14 Exponents: There are none Multiplication: So if something is directly in front of parentheses we distribute (multiply it to everything inside) 2(4X -5) -1(7X + 5) if nothing is present place a 1 and distribute 2*4X + 2*(-5) -1*7X + -1*5 8X -10 -7X – 5 (Remember negative times positive makes negative) So now we have: 8X -10 – 7X – 5 = -14 Division: There is none Addition and Subtractions: We combine like terms 8X -10 – 7X – 5 = -14 1X – 10 – 5 = -14 1X – 10 – 5 = -14 Like terms with same signs you add and the answer will receive that sign. Like if you owe someone \$10 then you owe them another \$5 now you OWE them \$15 1X – 15 = -14 Then we want to get X by itself so first we move everything over that is not attached to the X by doing to opposite So we ADD 15 to both sides (whatever you do to one side of the equation you have to do to the other 1X – 15 = -14 + 15 +15 1X = 1 If you have opposite signs you always subtract and then the larger numbers sign is the answers sign so 15 – 14 = 1. 15 was the bigger number and positive so the answer is positive. OR You owe the bank \$14 but you put in \$15 so now you have \$1.

### Subject:Basic Math

TutorMe
Question:

2 1 – 1 4 3

Inactive
Rae F.

First separate whole numbers and fractions: Whole Fraction 2 1 4 - 1 3 Next, find a common denominator: this is a number that both 4 and 3 go into (a number that can be divided by both 4 and 3). I am going to use 12 First, we write what our new denominator will be next to each fraction Whole Fraction 2 1 __ 4 12 - 1 __ 3 12 Then we ask our selves for each fraction what did we have to multiply to get the new denominator. For the top, we multiplied by 3 and the bottom fraction we multiplied by 4. Whole Fraction 2 1 __ 4 x3 12 - 1 __ 3 x4 12 Then we must multiply the numerators by this same number. Whole Fraction 2 1 x3 __ 4 x3 12 - 1 x4 __ 3 x4 12 Whole Fraction 2 1 x3 3 4 x3 12 - 1 x4 4 3 x4 12 Then we combine the numerators: 3 – 4 Since we cannot take 4 away from 3 we must BORROW from the whole number Whole Fraction 2 1 1 x3 3 + 12 4 x3 12 12 - 1 x4 4 3 x4 12 We take away one of 2 making it 1. Then we add the 1 to the fraction in the form of a fraction using the common denominator. Anything over itself is 1: so we have all 12 pieces out of a pie that has 12 pieces so we eat the whole pie. So then we add the numerators: 3 + 12 to get out new number for the top fraction Whole Fraction 2 1 1 x3 3 + 12 = 15 4 x3 12 12 12 - 1 x4 4 3 x4 12 Now we can subtract: First the whole numbers 1 – 0 (we can say 0 because nothing is there in the while number section) than 15 -4 Whole Fraction 2 1 1 x3 3 + 12 = 15 4 x3 12 12 12 - 0 1 x4 4 3 x4 12 1 9 12 This can then be reduced because both 9 and 12 can be divided into 3 9 /3 Remember whatever you do to the numerator must also be done to the denominator 12 /3 9 /3 = 3 12 /3 4 So our answer is: 1 3 4

### Subject:Algebra

TutorMe
Question:

A total of 925 tickets were sold for a game for a total of \$1,150. If adult tickets sold for \$2.00 and children's tickets sold for \$1.00, how many of each kind of ticket were sold?

Inactive
Rae F.

## Contact tutor

Send a message explaining your
needs and Rae will reply soon.
Contact Rae