Enable contrast version

# Tutor profile: Peeyush R.

Inactive
Peeyush R.
mathematics expert
Tutor Satisfaction Guarantee

## Questions

### Subject:Pre-Calculus

TutorMe
Question:

Find the domain of the function given below \frac{x+1}{\sqrt{(x-5)(x-3)^{2}(x+2)^{3}}}

Inactive
Peeyush R.

For the domain of this function, the denominator should not be zero and the square root function should always be positive. Therefore, on the number line mark points - 2,3,5. the value of this function becomes negative in the interval [-2,5]. so the domain is R -{[-2,5]}

### Subject:Trigonometry

TutorMe
Question:

If \left (tan\alpha + cot\alpha \right ) =4. Find \left log_{15}(tan^{4}\alpha + cot^{4}\alpha +31)

Inactive
Peeyush R.

\left (tan\alpha + cot\alpha \right )=4 On squaring both sides We get, tan^{2}\alpha + cot^{2}\alpha +2= 16 tan^{2}\alpha + cot^{2}\alpha = 14 Again squaring both sides tan^{4}\alpha + cot^{4}\alpha +2= 196 tan^{4}\alpha + cot^{4}\alpha = 194 Adding 31 both sides we finally get tan^{4}\alpha + cot^{4}\alpha + 31 = 225 Now, log_{15}(tan^{4}\alpha + cot^{4}\alpha +31) log_{15}(225)) log_{15}(15^{2}) 2 FINAL ANSWER IS 2

### Subject:Calculus

TutorMe
Question:

If f'(x) denotes the derivative of function f(x) and f"(x) denotes the derivative of f'(x) where f(x) is defined as sin(\frac{\prod}{2}(x^{2})). Find the anti dervative given below. \int_{0}^{1}\frac{f"(x)dx}{\sqrt{f'(x)}}

Inactive
Peeyush R.

\int_{0}^{1}\frac{f"(x)dx}{\sqrt{f'(x)}} f(x)= sin(\frac{\prod}{2}(x^{2})). On differentiating both sides with respect to x We get, f'(x)dx=\prod x cos(\frac{\prod}{2}(x^{2})). Note: The integration of the form \frac{f'(x)dx}{\sqrt{f(x)}} is 2\sqrt{f(x)}. Therefore, final value will be 2\left [ f'(1)-f'(0) \right ] 2(0-0)=0 The value of the integral is 0

## Contact tutor

Send a message explaining your
needs and Peeyush will reply soon.
Contact Peeyush