Enable contrast version

# Tutor profile: Beverly M.

Inactive
Beverly M.
Industrial Engineer by Day, Mathematics Tutor by Night
Tutor Satisfaction Guarantee

## Questions

### Subject:Pre-Algebra

TutorMe
Question:

What is the slope of the line that contains the points $$(4, 6)$$ and $$(13, -9)$$ ?

Inactive
Beverly M.

To find the slope of a line given two point. We must know the formula for finding the slope when given two points. Formula: when given points $$(x_1, y_1)$$ and $$(x_2, y_2)$$ $$m = \frac{y_{1} - y_{2}}{x_{1}- x_{2}}$$ = slope Next let's plug our points into the equation: $$(4, 6)$$ and $$(13, -9)$$ $$m = \frac{6 - (-9)}{4 -13}$$ $$m =- \frac{15}{9}$$ The slope of the line is -$$\frac{15}{9}$$

### Subject:Basic Math

TutorMe
Question:

Sally walked $$½$$ of a mile yesterday and $$¾$$ of a mile today. How many miles has Sally walked?

Inactive
Beverly M.

Set up the expression. We want to know how many total miles Sally walked which requires the use of Addition. Notes for adding fractions. Look at the denominator: If same denominator we can simply add the numerators and simplify. If different denominator we need to find the Least Common Denominator (LCD) Step 1. Setting up our expression $$\frac{1}{2}+\frac{3}{4}=x$$ Step 2: Identify denominator Different denominators Step 3: Find the LCD. Since 2 is a multiple of 4 we know that the LCD is 4. Step 4: Multiply the fraction $$\frac{1}{2}$$ by $$\frac{2}{2} = 1$$ $$\frac{2}{4}+\frac{3}{4}=x$$ *Note: By multiplying by 1 does not change the original equation Step 5: Combine like terms $$\frac{5}{4} = x$$ Solution: Sally walked $$\frac{5}{4}$$ miles.

### Subject:Algebra

TutorMe
Question:

Solve for x: $$2x^2+4(x^2 + 3) -2 =22$$

Inactive
Beverly M.

First let us take note of the order of operations: Please (Parentheses) Excuse (Exponents) My (Multiplication) Dear (Division) Aunt (Addition) Sally (Subtraction) *Note that the M and D and A and S are to be solved in the order they are received. Let’s solve: $$2x^2+4(x^2+3)-2=22$$ Step 1: My (Multiplication) Multiply 4 by the expressions inside the parentheses. $$2x^2+4x^2+12-2=22$$ Step 2: Aunt (Addition) Add $$2x^2+4x^2$$ $$6x^2+12-2=22$$ Step 3: Sally (Subtraction) Subtract $$12-2$$ $$6x^2+10=22$$ Step 4: Set the equation equal to zero Subtract $$22$$ from both sides $$6x^2+10-22=0$$ Step 5: Sally (Subtraction) Subtract $$10-22$$ $$6x^2-12=0$$ Step 6: Solve for $$x$$ Add $$12$$ to both sides $$6x^2=12$$ Step 7: Solve for $$x$$ ctd. Divide by $$6$$ on both sides $$x^2=2$$ Step 8: Solve for $$x$$ ctd. Take the Square Root of both sides x=$$\sqrt{2}$$ and $$-\sqrt{2}$$ Step 9: Check your answer by plugging in $$x$$ $$2x^2+4(x^2+3)-2=22$$ $$2[(\sqrt{2})^2+4((\sqrt{2})^2+3)-2=22$$ $$2(2)+4(2+3)-2=22$$ $$4+4(5)-2=22$$ $$4+20-2=22$$ $$24-2=22$$ $$22=22$$ *Note: A negative number squared is a positive number thus same answer for $$-\sqrt{2}$$

## Contact tutor

Send a message explaining your
needs and Beverly will reply soon.
Contact Beverly

Start Lesson

## FAQs

What is a lesson?
A lesson is virtual lesson space on our platform where you and a tutor can communicate. You'll have the option to communicate using video/audio as well as text chat. You can also upload documents, edit papers in real time and use our cutting-edge virtual whiteboard.
How do I begin a lesson?
If the tutor is currently online, you can click the "Start Lesson" button above. If they are offline, you can always send them a message to schedule a lesson.
Who are TutorMe tutors?
Many of our tutors are current college students or recent graduates of top-tier universities like MIT, Harvard and USC. TutorMe has thousands of top-quality tutors available to work with you.
BEST IN CLASS SINCE 2015
TutorMe homepage