Enable contrast version

# Tutor profile: Akanksha P.

Inactive
Akanksha P.
Government teacher
Tutor Satisfaction Guarantee

## Questions

### Subject:Linear Algebra

TutorMe
Question:

If $W = \left\{ {y:y\,is\,\,a\,real\,valued\,function\,on\,{\rm{real no}}.{\rm{ :}}\frac{{{d^2}y}}{{d{x^2}}} - 5\frac{{dy}}{{dx}} + 6y = 0} \right\}$ What is the dimesion of $W$.

Inactive
Akanksha P.

$W$ forms vector space . Let $\frac{d}{{dx}} = D$ So $\begin{array}{l} \left( {{D^2} - 5D + 6} \right)y = 0\\ \left( {D - 2} \right)\left( {D - 3} \right)y = 0\\ y = \alpha {e^{2x}} + \beta {e^{3x}} \end{array}$ where $\alpha and \beta$ are arbitrary constants. Here ${e^{2x}},{e^{3x}}$ are two linearly independent solution of D.E. Then $dim(W)=2$.

### Subject:Algebra

TutorMe
Question:

If $\frac{{{Q_8}}}{{Z({Q_8})}} \cong G$ then $G$ is $\begin{array}{l} i){Q_8}\\ ii){Z_2}\\ iii){K_4}\,\,or\,\,{Z_2} \times {Z_2}\\ iv){Z_4} \end{array}$ where ${Q_8} = {\rm{Hamiltonian}}\,\,{\rm{group}}$${Z_m}\,$ represents cyclic group of order $m$ and ${K_4}\,$ is Kilien's four group.

Inactive
Akanksha P.

As we know that ${Q_8} = \left\{ { \pm 1, \pm i, \pm j, \pm k} \right\}\,$and$Z({Q_8}) = \left\{ { \pm 1} \right\}\,$ So order of ${Q_8} = 8\,\,{\rm{and order}}\,{\rm{of}}\,Z({Q_8}) = 2$ i.e.,order of $\frac{{{Q_8}}}{{Z({Q_8})}} = 4$ Now we have only two possibilities Let us consider $G = {Z_4}$,$Z_4}$ is a cyclic group of order 4. It means $\frac{{{Q_8}}}{{Z({Q_8})}}$ is cyclic. We have a theorem,$If\,\frac{G}{{Z(G)}}\,is\,cyclic \Rightarrow G\,is\,abelian.$ which imply${{Q_8}}$ is abelian. This is wrong. Hence $G = {K_4}$.

### Subject:Partial Differential Equations

TutorMe
Question:

Find the complete integral of Partial Differential Equation \begin{equation} 6z\left( {\frac{{\partial z}}{{\partial x}}} \right)\left( {\frac{{\partial z}}{{\partial y}}} \right) = 3{\left( {\frac{{\partial z}}{{\partial x}}} \right)^2}\left[ {3{{\left( {\frac{{\partial z}}{{\partial x}}} \right)}^3} + 2x\left( {\frac{{\partial z}}{{\partial y}}} \right)} \right] + 2{\left( {\frac{{\partial z}}{{\partial y}}} \right)^2}\left[ {2{{\left( {\frac{{\partial z}}{{\partial y}}} \right)}^3} + 3y\left( {\frac{{\partial z}}{{\partial x}}} \right)} \right] \end{equation}

Inactive
Akanksha P.

For simplification, Let us consider $p = \left( {\frac{{\partial z}}{{\partial x}}} \right),and q = \left( {\frac{{\partial z}}{{\partial y}}} \right)$ so we can write the given equation as $6zpq = 3{p^2}\left[ {3{p^3} + 2xq} \right] + 2{q^2}\left[ {2{q^3} + 3yp} \right]$ i.e.,$\begin{array}{l} z = \frac{{3{p^2}\left[ {3{p^3} + 2xq} \right] + 2{q^2}\left[ {2{q^3} + 3yp} \right]}}{{6pq}}\\ z = \frac{{3{p^2}\left[ {3{p^3} + 2xq} \right]}}{{6pq}} + \frac{{2{q^2}\left[ {2{q^3} + 3yp} \right]}}{{6pq}}\\ z = \frac{3}{2}\frac{{{p^4}}}{q} + px + \frac{2}{3}{q^4} + qy \end{array}$ Now it becomes Clairates Equation So the complete integral of Partial Differential Equation is $z = \frac{3}{2}\frac{{{a^4}}}{q} + ax + \frac{2}{3}{b^4} + by$ where $a$ and $b$ are arbitrary constants.

## Contact tutor

Send a message explaining your
needs and Akanksha will reply soon.
Contact Akanksha