Enable contrast version

# Tutor profile: Dev O.

Inactive
Dev O.
Advanced Math Tutor for three years, Engineering at UC Berkeley
Tutor Satisfaction Guarantee

## Questions

### Subject:Applied Mathematics

TutorMe
Question:

Henry works for the council and is responsible for the up keep of speed cameras on roads in the area. Recently a particular camera has stop working, and Henry must go and repair it. However, to diagnose the issue and then complete the repairs, Henry must shut down the camera completely for 2 hours. The council tells Henry that the camera catches speeding drivers at a rate of 3 per hour. Henry arrives at the camera location at 8:45AM. After waiting 15 minutes, he observes no speeding drivers and decides to start his repairs. What is the probability that any speeding cars will pass the camera while it is down?

Inactive
Dev O.

In Poisson processes the distribution of the waiting times is memoryless so all you need is to compute the probability of at least one arrival in the next 2 hours. It is probably easiest to look at the Poisson process. An average of 3/h means an expected value of $$𝜇 = 6$$ over 2 hours. You then need $$𝑃(𝑋≥1)=1 − 𝑃(𝑋=0)= \dfrac{\mu^0e^{-\mu}}{0!}=1−𝑒^{-6}≈0.9975$$ If you want to go the exponential route then consider that inter-arrival times follow an exponential distribution with mean 1/3 (i.e. 20 minutes). You want to compute $$𝑃 (𝑇 < 2) = 1 − 𝑒^{−\dfrac{21}{1/3}}= 1 − 𝑒^{−6} ≈ 0.9975$$.

### Subject:Discrete Math

TutorMe
Question:

Suppose you have a well-shuffled standard deck of cards, (faces down). You start turning over the cards, one at a time, from the top of the deck. Let $$S$$ be the expected number of cards you need to turn over before revealing all four $$7$$'s. If $$S = \dfrac{a}{b}$$, where $$a$$ and $$b$$ are positive coprime integers, then find $$a + b$$

Inactive
Dev O.

This scenario is equivalent to finding the expected position of the last $$7$$ in a string of $$x$$'s and $$7$$'s, where the $$x$$'s represent any denomination other than a $$7$$. Now there are $$\binom{52}{4}$$ ways the four 7's can be positioned in the deck. There is one way that the string can have the last 7 in the 4th position, $$\binom{4}{3}$$ ways in which the last 7 shows up in the 5th position, and in general, $$\binom{n}{3}$$ ways in which the last 7 can show up in the $$(n + 1)$$st position for $$3 \le n \le 51$$ The expected value is then the weighted average of these individual values, i.e., $$\dfrac{1}{\binom{52}{4}}*\displaystyle\sum_{n=3}^{51} (\dbinom{n}{3}*(n + 1)) = \dfrac{4}{\binom{52}{4}}*\sum_{n=4}^{52} \dbinom{n}{4} = \dfrac{4}{\binom{52}{4}}*\dbinom{53}{5}$$ where this last step made use of the Hockey-Stick Identity. Simplifying, this last value becomes $$\dfrac{\frac{4*53!}{48!*5!}}{\frac{52!}{48!*4!}} = \dfrac{4*53}{5} = \dfrac{212}{5}$$. . Thus $$a + b = 212 + 5 = 217$$

### Subject:Calculus

TutorMe
Question:

See here: https://imgur.com/a/o1fQrcN

Inactive
Dev O.

I have done an explanation of the problem here: https://youtu.be/m-ga0NTth1k

## Contact tutor

Send a message explaining your
needs and Dev will reply soon.
Contact Dev

Start Lesson

## FAQs

What is a lesson?
A lesson is virtual lesson space on our platform where you and a tutor can communicate. You'll have the option to communicate using video/audio as well as text chat. You can also upload documents, edit papers in real time and use our cutting-edge virtual whiteboard.
How do I begin a lesson?
If the tutor is currently online, you can click the "Start Lesson" button above. If they are offline, you can always send them a message to schedule a lesson.
Who are TutorMe tutors?
Many of our tutors are current college students or recent graduates of top-tier universities like MIT, Harvard and USC. TutorMe has thousands of top-quality tutors available to work with you.
BEST IN CLASS SINCE 2015
TutorMe homepage