Subjects
PRICING
COURSES
SIGN IN
Start Free Trial
Aaron A.
Licensed Mechanical Engineer
Tutor Satisfaction Guarantee
Mechanical Engineering
TutorMe
Question:

A tank holding carbon dioxide at 6,000 psi is made of a steel cylinder with caps welded to the ends. The cylinder's inner dimensions must be 13 inches diameter by 5 feet length to ensure the proper volume. What is the factor of safety if the wall thickness of the vessel is 1.5 inches? Assume the steel's yield strength is 45 ksi. Use thick walled theory and the Distortion Energy Theory.

Aaron A.
Answer:

Because it is not otherwise stated, it is assumed that the external pressure is atmospheric. Therefore $$p_o=0$$. The following information can be pulled from the problem statement: $$p_i=6,000$$ psi $$r_i=13\times0.5=6.5$$ in $$t=1.5$$ in $$r_o=6.5+1.5=8$$ in Because we know that the caps are welded to the ends of the vessel, we know that we will have tangential stress ($$\sigma_t$$), radial stress $$(\sigma_r)$$, and longitudinal stress ($$\sigma_l$$). $$\sigma_t=\frac{r_i^{2}p_i}{r_o^{2}-r_i^{2}}(1+\frac{r_o^{2}}{r_i^{2}})=\frac{(6.5^{2})(6,000)}{8^{2}-6.5^{2}}(1+\frac{8^{2}}{6.5^{2}})=29,310$$ psi $$\sigma_t=\frac{r_i^{2}p_i}{r_o^{2}-r_i^{2}}(1-\frac{r_o^{2}}{r_i^{2}})=\frac{(6.5^{2})(6,000)}{8^{2}-6.5^{2}}(1-\frac{8^{2}}{6.5^{2}})=-6000$$ psi $$\sigma_l=\frac{r_i^{2}p_i}{r_o^{2}-r_i^{2}}=\frac{(6.5^{2})(6,000)}{8^{2}-6.5^{2}}=11,655$$ psi Since $$\sigma_t, \sigma_r, \sigma_l $$ are principle stresses, we can use these to directly find the von Mises stress. $$\sigma'=\sqrt{\frac{(\sigma_t-\sigma_r)^{2}+(\sigma_r-\sigma_l)^{2}+(\sigma_l-\sigma_t)^{2}}{2}}$$ $$=\sqrt{\frac{(29,310+6000)^{2}+(-6000-11,655)^{2}+(11,655-29,310)^{2}}{2}}$$ $$=30,579$$ psi $$=30.6$$ ksi Using the distortion energy theory, the factor of safety can be found by: $$n=\frac{S_y}{\sigma'}=\frac{45}{30.6}=1.47$$ $$\longleftarrow$$ ANSWER

Algebra
TutorMe
Question:

What is the quadratic equation? Use it to solve for solutions of $$3x^{2}+5x-16=0$$

Aaron A.
Answer:

$$x=\frac{-b\pm\sqrt{b^{2}-4ac}}{2a}$$ when $$ax^{2}+bx+c=0$$ $$x=\frac{-5\pm\sqrt{5^{2}-4(3)(-16)}}{2(3)}$$ $$x=\frac{-5\pm\sqrt{217}}{6}$$ $$x=1.622$$ & $$x=-3.288$$

Physics
TutorMe
Question:

What is Newton's Third Law of Motion? Please give an example of the application of this law.

Aaron A.
Answer:

Newton's Third Law of Motion states that for every action, there is an equal and opposite reaction. An example of this is the recoil of a cannon when fired. The forces generated that cause the action of the projectile in the form of forward motion also cause the cannon to react in the form of recoil.

Send a message explaining your
needs and Aaron will reply soon.
Contact Aaron
Ready now? Request a lesson.
Start Session
FAQs
What is a lesson?
A lesson is virtual lesson space on our platform where you and a tutor can communicate. You'll have the option to communicate using video/audio as well as text chat. You can also upload documents, edit papers in real time and use our cutting-edge virtual whiteboard.
How do I begin a lesson?
If the tutor is currently online, you can click the "Start Session" button above. If they are offline, you can always send them a message to schedule a lesson.
Who are TutorMe tutors?
Many of our tutors are current college students or recent graduates of top-tier universities like MIT, Harvard and USC. TutorMe has thousands of top-quality tutors available to work with you.