Enable contrast version

# Tutor profile: David S.

Online
David S.
Personal math tutor for all-ages with over 5 years of experience.
Tutor Satisfaction Guarantee

## Questions

### Subject:Pre-Calculus

TutorMe
Question:

Prove the following relationship using trigonometric identities: $(\sin(107^{\circ})\cos(39^{\circ})-\cos(107^{\circ})\sin(39^{\circ})=\cos(22^{\circ})$)

Inactive
David S.

We can see that the left side of the equation is in the form of the sine angle difference identity: $$\sin(A-B)=\sin A\cos B-\cos A\sin B$$. $(\sin(107^{\circ}-39^{\circ})=\cos(22^{\circ})$) Simplifying, we get $(\sin(68^{\circ})=\cos(22^{\circ})$) Using the cofunction identity between sine and cosine $(\sin\left(\frac{\pi}{2}-\theta\right)=\cos\theta\\\sin(90^{\circ}-x^{\circ})=\cos(x^{\circ})$) $(\sin(68^{\circ})=\sin(90^{\circ}-22^{\circ})\quad\implies\quad \cos(22^{\circ})$)

### Subject:Calculus

TutorMe
Question:

Solve the following indefinite integral: $({\displaystyle\int}-\mathrm{e}^{\cos\left(x\right)}\sin\left(x\right)\cos\left(\cos\left(x\right)\right)\,\mathrm{d}x$)

Inactive
David S.

First, we do a simple u-sub where $$u=\cos(x)$$ and $$\mathrm{d}u=-\sin(x)\, \mathrm{d}x$$ $({\displaystyle\int}\mathrm{e}^u\cos\left(u\right)\,\mathrm{d}u$) Then, we integrate by parts with $$f=\cos(u)$$ and $$g'=\mathrm{e}^u\, \mathrm{d}u$$. This means $$f'=-\sin(u)\,\mathrm{d}u$$ and $$g=\mathrm{e}^u$$. $({\displaystyle\int}fg'\implies fg-{\displaystyle\int}f'g$) Substituting, we get $(\mathrm{e}^u\cos\left(u\right)-{\displaystyle\int}-\mathrm{e}^u\sin\left(u\right)\,\mathrm{d}u\\\mathrm{e}^u\cos\left(u\right)+{\displaystyle\int}\mathrm{e}^u\sin\left(u\right)\,\mathrm{d}u$) Then, we integrate by parts again, with $$j=\sin(u)$$ and $$k'=\mathrm{e}^u\,\mathrm{d}u$$. This means $$j'=\cos(u)\,\mathrm{d}u$$ and $$k=\mathrm{e}^u$$. $(\mathrm{e}^u\cos\left(u\right)+{\displaystyle\int}jk'\implies \mathrm{e}^u\cos\left(u\right)+jk-{\displaystyle\int}j'k$) Substituting, we get $(\mathrm{e}^u\cos\left(u\right)+\mathrm{e}^u\sin(u)-{\displaystyle\int}\mathrm{e}^u\cos(u)\,\mathrm{d}u$) Now, we appear stuck, since we've ended up with the same integral we started with (after the initial u-sub). However, if we realize that we can set what we started with equal to our result: $({\displaystyle\int}\mathrm{e}^u\cos\left(u\right)\,\mathrm{d}u=\mathrm{e}^u\cos\left(u\right)+\mathrm{e}^u\sin(u)-{\displaystyle\int}\mathrm{e}^u\cos(u)\,\mathrm{d}u$) We can add the integral to both sides, yielding $(2{\displaystyle\int}\mathrm{e}^u\cos\left(u\right)\,\mathrm{d}u=\mathrm{e}^u\cos\left(u\right)+\mathrm{e}^u\sin(u)$) Which means our u-sub integral equals: $({\displaystyle\int}\mathrm{e}^u\cos\left(u\right)\,\mathrm{d}u=\frac{\mathrm{e}^u\cos\left(u\right)+\mathrm{e}^u\sin(u)}{2}$) Finally, substituting in our original u-sub values gives $({\displaystyle\int}-\mathrm{e}^{\cos\left(x\right)}\sin\left(x\right)\cos\left(\cos\left(x\right)\right)\,\mathrm{d}x=\dfrac{\mathrm{e}^{\cos\left(x\right)}\sin\left(\cos\left(x\right)\right)+\mathrm{e}^{\cos\left(x\right)}\cos\left(\cos\left(x\right)\right)}{2}$) Lastly, to complete our answer, since the integral is indefinite (no bounds) we must add a constant of integration, which we'll call $$C$$. $(\mathrm{Answer:}\qquad \dfrac{\mathrm{e}^{\cos\left(x\right)}\sin\left(\cos\left(x\right)\right)+\mathrm{e}^{\cos\left(x\right)}\cos\left(\cos\left(x\right)\right)}{2}+C$)

### Subject:Algebra

TutorMe
Question:

Find all values of $$x$$ that make the following statement true. Your answer can be in terms of $$y$$ (assume $$y$$ is some real number). $(-5x^2+2x^3=18xy^2-45y^2$)

Inactive
David S.

First, we move all the terms to one side so that we have a polynomial equation equal to zero. $(-5x^2+2x^3-18xy^2+45y^2=0$) Next, we can check whether any of our factoring techniques can be applied here. From the order it's in currently, we can clearly see that there are common factors that can be taken out by grouping (namely an $$x^2$$ and a $$9y^2$$). $(x^2 (-5+2x)+9y^2(-2x+5)=0$) We can now see that our second group looks $$\textit{similar}$$ but has the wrong signs. This means we simply take out a negative from one of the groups. It doesn't matter which we choose, so let's go with the first one. $(-x^2 (5-2x)+9y^2(-2x+5)=0\\-x^2 (-2x+5)+9y^2(-2x+5)=0$) Now, we continue our factoring to get $((-x^2+9y^2)\: (-2x+5)=0\\(9y^2-x^2)\: (-2x+5)=0$) The first set of parenthesis can be factored, because it is a difference of perfect squares. $((3y+x)\: (3y-x)\: (-2x+5)=0$) Setting each parenthesis equal to zero yields $(3y+x=0\\3y-x=0\\-2x+5=0$) So, our three answers are $(x=\frac{5}{2},\quad x=-3y,\quad x=3y$)

## Contact tutor

Send a message explaining your
needs and David will reply soon.
Contact David

Start Lesson

## FAQs

What is a lesson?
A lesson is virtual lesson space on our platform where you and a tutor can communicate. You'll have the option to communicate using video/audio as well as text chat. You can also upload documents, edit papers in real time and use our cutting-edge virtual whiteboard.
How do I begin a lesson?
If the tutor is currently online, you can click the "Start Lesson" button above. If they are offline, you can always send them a message to schedule a lesson.
Who are TutorMe tutors?
Many of our tutors are current college students or recent graduates of top-tier universities like MIT, Harvard and USC. TutorMe has thousands of top-quality tutors available to work with you.
BEST IN CLASS SINCE 2015
TutorMe homepage